Some High-order Zero-finding Methods Using Almost Orthogonal Polynomials

نویسنده

  • RICHARD P. BRENT
چکیده

Some multipoint iterative methods without memory, for approximating simple zeros of functions of one variable, are described. For m > 0, n ≥ 0, and k satisfying m+1 ≥ k > 0, there exist methods which, for each iteration, use one evaluation of f, f ′, . . . , f (m), followed by n evaluations of f (k), and have order of convergence m + 2n + 1. In particular, there are methods of order 2(n+1) which use one function evaluation and n+1 derivative evaluations per iteration. These methods naturally generalize the known cases n = 0 (Newton’s method) and n = 1 (Jarratt’s fourth-order method), and are useful if derivative evaluations are less expensive than function evaluations. To establish the order of convergence of the methods we prove some results, which may be of independent interest, on orthogonal and “almost orthogonal” polynomials. Explicit, nonlinear, Runge-Kutta methods for the solution of a special class of ordinary differential equations may be derived from the methods for finding zeros of functions. The theoretical results are illustrated by several numerical examples. Comments Only the Abstract is given here. The full paper appeared as [1]. For related work, see [2].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving singular integral equations by using orthogonal polynomials

In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...

متن کامل

A Riemann-hilbert Problem for Skew-orthogonal Polynomials

Abstract. We find a local (d + 1)× (d + 1) Riemann-Hilbert problem characterizing the skew-orthogonal polynomials associated to the partition function of the Gaussian Orthogonal Ensemble of random matrices with a potential function of degree d. Our Riemann-Hilbert problem is similar to a local d × d RiemannHilbert problem found by Kuijlaars and McLaughlin characterizing the bi-orthogonal polyno...

متن کامل

ORTHOGONAL ZERO INTERPOLANTS AND APPLICATIONS

Orthogonal zero interpolants (OZI) are polynomials which interpolate the “zero-function” at a finite number of pre-assigned nodes and satisfy orthogonality condition. OZI’s can be constructed by the 3-term recurrence relation. These interpolants are found useful in the solution of constrained approximation problems and in the structure of Gauss-type quadrature rules. We present some theoretical...

متن کامل

A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations

In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.

متن کامل

The operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications

In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003